9 research outputs found

    Comparative genome analysis of multiple vancomycin-resistant Enterococcus faecium isolated from two fatal cases

    Get PDF
    Enterococcus faecium is both a commensal of the human intestinal tract and an opportunistic pathogen. The increasing incidence of enterococcal infections is mainly due to the ability of this organism to develop resistance to multiple antibiotics, including vancomycin. The aim of this study was to perform comparative genome analyses on four vancomycin-resistant Enterococcus faecium (VREfm) strains isolated from two fatal cases in a tertiary hospital in Malaysia. Two sequence types, ST80 and ST203, were identified which belong to the clinically important clonal complex (CC) 17. This is the first report on the emergence of ST80 strains in Malaysia. Three of the studied strains (VREr5, VREr6, VREr7) were each isolated from different body sites of a single patient (patient Y) and had different PFGE patterns. While VREr6 and VREr7 were phenotypically and genotypically similar, the initial isolate, VREr5, was found to be more similar to VRE2 isolated from another patient (patient X), in terms of the genome contents, sequence types and phylogenomic relationship. Both the clinical records and genome sequence data suggested that patient Y was infected by multiple strains from different clones and the strain that infected patient Y could have derived from the same clone from patient X. These multidrug resistant strains harbored a number of virulence genes such as the epa locus and pilus-associated genes which could enhance their persistence. Apart from that, a homolog of E. faecalis bee locus was identified in VREr5 which might be involved in biofilm formation. Overall, our comparative genomic analyses had provided insight into the genetic relatedness, as well as the virulence potential, of the four clinical strains

    Simultaneous differential detection of human pathogenic and nonpathogenic Vibrio species using a multiplex PCR based on gyrB and pntA genes

    No full text
    Aims: To develop a multiplex PCR targeting the gyrB and pntA genes for Vibrio species differentiation. Methods and Results: Four pairs of primers targeting gyrB gene of Vibrios at genus level and pntA gene of Vibrio cholerae, Vibrio parahaemolyticus, Vibrio vulnificus were designed. This PCR method precisely identified 250 Vibrio species and demonstrated sensitivity in the range of 4 -104 CFU ml-1 (c. 200 CFU per PCR) to 2 -103 CFU ml-1 (c. 10 CFU per PCR). Overall, the gyrB gene marker showed a higher specificity than the dnaJ gene marker for Vibrio detection and was able to distinguish Aeromonas from Vibrio species. Conclusions: The multiplex PCR based on combined gyrB and pntA provides a high discriminatory power in the differentiation between Vibrio alginolyticus and V. parahaemolyticus, and between V. cholerae and Vibrio mimicus. Significance and Impact of the Study: This assay will be useful for rapid differentiation of various Vibrio species from clinical and environmental sources and significantly overcomes the limitations of the conventional methods

    Genetic variation analysis of Vibrio cholerae using multilocus sequencing typing and multi-virulence locus sequencing typing

    No full text
    This paper describes the development and application of multilocus sequencing typing (MLST) and multi-virulence locus sequencing typing (MVLST) methods in determining the genetic variation and relatedness of 43 Vibrio cholerae strains of different serogroups isolated from various sources in Malaysia. The MLST assay used six housekeeping genes (dnaE, lap, recA, gyrB, cat and gmd), while the MVLST assay incorporated three virulence genes (ctxAB, tcpA and tcpI) and three virulence-associated genes (hlyA, toxR and rtxA). Our data showed that the dnaE and rtxA genes were the most conserved genes in V. cholerae O1 strains. Among the 12 studied genes, transitional substitutions that led to silent mutations were observed in all, except for gmd and hlyA, while non-synonymous substitutions occurred more frequently in virulence and virulence-associated genes. Five V. cholerae O1 strains were found to be the El Tor variant O1 strains because they harboured the classical ctxB gene. In addition, the classical ctxB gene was also observed in O139 V. cholerae. A total of 29 MLST types were observed, and this assay could differentiate V. cholerae within the non-O1/non-O139 serogroups. A total of 27 MVLST types were obtained. MVLST appeared to be more discriminatory than MLST because it could differentiate V. cholerae strains from two different outbreaks and could separate the toxigenic from the non-toxigenic subtypes. Although the O1 V. cholerae strains were closely related, the combined MLST and MVLST analyses differentiated the strains isolated from different localities. In conclusion, sequence-based analysis in this study provided a better understanding of mutation points and the type of mutations in V. cholerae. The MVLST assay is useful to characterise O1 V. cholerae strains, while combined analysis may improve the discriminatory power and is suitable for the local epidemiological study of V. cholerae

    Development and evaluation of a multiplex polymerase chain reaction for the detection of salmonella species

    No full text
    The present study aims to develop a system which consists of four pairs of primers that specifically detects Salmonella spp., Salmonella serovar Typhi and Salmonella serovar Paratyphi A with an internal amplification control. The system, when applied in Polymerase Chain Reaction (PCR) under specific conditions, reaction mixture and cycling temperatures produced four bands; 784 bp, 496 bp, 332 bp and 187 bp. The DNA band 784 bp is present in all Salmonella spp., while the bands of 496 bp and 332 bp are only present in S. Paratyphi A and S. Typhi, respectively. An internal amplification control as indicated by the 187 bp shows the system is working in optimum condition in all the tests. This multiplex PCR was evaluated on 241 bacterial cultures and 691 naturally contaminated samples. Overall, this multiplex PCR detection system provides a single step for simultaneous detection of DNAs of Salmonella spp., S. Typhi and S. Paratyphi A

    Further evaluation of a multiplex PCR for differentiation of Salmonella paratyphi A from other salmonellae

    No full text
    Salmonella enterica serovar Paratyphi A is a causative agent of paratyphoid fever. The clinical syndrome caused by paratyphoid fever overlaps with other febrile illnesses and cannot be distinguished from typhoid fever. Conventional methods used for diagnosis are time consuming, costly, and labor-intensive. We evaluated the specificity, sensitivity, and application of a multiplex polymerase chain reaction (PCR) previously developed by the method (Ou, H.Y., Teh, C.S.J., Thong, K.L., et al., J. Mol. Diagn., 9, 624-630, 2007) using 6 S. Paratyphi A, 22 S. Typhi, and 85 other Salmonella serovars as well as 36 non-Salmonella strains. The detection limit of the multiplex PCR was 4 x 10(4) cfu ml(-1). In a blind test of the other 50 strains, this multiplex PCR correctly identified the only S. Paratyphi A in the panel of strains. The sensitivity of this PCR using spiked blood and stool samples was 1 x 10(5) cfu ml(-1) and 2 x 10(5) cfu ml(-1), respectively, but increased to 1 x 10(4) cfu ml(-1) and 2 x 10(3) cfu ml(-1) after 5-h enrichment. We believe that this multiplex PCR is a promising technique for the specific and sensitive detection of S. Paratyphi A in clinical, environmental, and food samples

    A real-time loop-mediated isothermal amplification assay for rapid detection of shigella species

    No full text
    Shigellosis is a foodborne illness caused by the genus Shigella and is an important global health issue. The development of effective techniques for rapid detection of this pathogen is essential for breaking the chain of transmission. Therefore, we have developed a novel loop-mediated isothermal amplification (LAMP) assay targeting the invasion plasmid antigen H (ipaH) gene to rapidly detect Shigella species. This assay could be performed in 90 min at an optimal temperature of 64 degrees C, with endpoint results visualized directly. Notably, the method was found to be more sensitive than conventional PCR. Indeed, the detection limit for the LAMP assay on pure bacterial cultures was 5.9 x 10(5) CFU/ml, while PCR displayed a limit of 5.9 x 107 CFU/ml. In spiked lettuce samples, the sensitivity of the LAMP assay was 3.6 x 10(4) CFU/g, whereas PCR was 3.6 x 10(5) CFU/g. Overall, the assay accurately identified 32 Shigella spp. with one enteroinvasive Escherichia coli displaying positive reaction while the remaining 32 non-Shigella strains tested were negative

    Mutations in rpoB and fusA cause resistance to rifampicin and fusidic acid in methicillin-resistant Staphylococcus aureus strains from a tertiary hospital in Malaysia

    No full text
    Abstract Background The prevalence of resistance to rifampicin and fusidic acid among Malaysian strains of methicillin-resistant Staphylococcus aureus (MRSA) is increasing. This study aimed to determine the mechanisms of rifampicin and fusidic acid resistance and the genetic diversity of MRSA strains from a Malaysian tertiary hospital. Methods Minimum inhibitory concentrations (MIC) for 21 MRSA strains were determined by agar dilution test and Etest. The resistance genes, staphylococcal chromosome cassette mec (SCCmec) types, multilocus-sequence typing (MLST) types and spa types, were determined by PCR and DNA sequencing. Results MIC for rifampicin and fusidic acid resistance ranged from <1 to 8 µg/ml and from <1 to 256 µg/ml, respectively. A double mutation (484Arg/His and 517Glu/Gln) in rpoB causes high rifampicin resistance while a mutational change (461Leu/Lys) in fusA was observed in seven strains highly resistant to fusidic acid. Five of the seven were also resistant to rifampicin (MIC 8 µg/ml) and carried a mutated rpoB gene (484Arg/His). No other acquired fusidic acid resistance gene (fusB, fusC or fusD) was detected. Most (14/21) of the strains belonged to clone ST239-III-t037. Three belonged to ST22-IV-t1378 and the remaining four to ST239-III-t2029, ST239-III-t421, ST1178-IV-t1107 and ST241-III-t363, respectively. Conclusions The study showed that both rifampicin and fusidic acid resistance was associated with mutational change in rpoB and fusA, respectively. All rifampicin-resistant strains were from the same clone ST239-III-t037 whereas strains resistant to fusidic acid were genetically more diverse

    Molecular characterization of serogrouping and virulence genes of Malaysian Vibrio cholera isolated from different sources

    Get PDF
    A pair of primers targeting the hlyA gene for Vibrio cholerae which could distinguish the classical from El Tor biotypes was designed and combined with other specific primers for ompW, rfb complex, and virulence genes such as ctxA, toxR, and tcpI in a multiplex PCR (m-PCR) assay. This m-PCR correctly identified 39 V. cholerae from clinical, water and seafood samples. The efficiency of this multiplex PCR (m-PCR) was compared with conventional biochemical and serogrouping methods. One O139 and 25 O1 V. cholerae strains including 10 environmental strains harbored all virulence-associated genes except 1 clinical strain which only had toxR and hlyA genes. Thirteen environmental strains were classified as non-O1/non-O139 and had the toxR and hlyA genes only. The detection limit of m-PCR was 7 × 104 cfu/ml. The m-PCR test was reliable and rapid and reduced the identification time to 4 h

    Insights from the genome sequence of a salmonella enterica serovar typhi strain associated with a sporadic case of typhoid fever in Malaysia

    No full text
    Salmonella enterica serovar Typhi is the causative agent of typhoid fever, which causes nearly 21.7 million illnesses and 217,000 deaths globally. Herein, we describe the whole-genome sequence of the Salmonella Typhi strain ST0208, isolated from a sporadic case of typhoid fever in Kuala Lumpur, Malaysia. The whole-genome sequence and comparative genomics allow an in-depth understanding of the genetic diversity, and its link to pathogenicity and evolutionary dynamics, of this highly clonal pathogen that is endemic to Malaysia
    corecore